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a b s t r a c t 

The outbreak of COVID-19 Coronavirus, namely SARS-CoV-2, has created a calamitous sit- 

uation throughout the world. The cumulative incidence of COVID-19 is rapidly increasing 

day by day. Machine Learning (ML) and Cloud Computing can be deployed very effectively 

to track the disease, predict growth of the epidemic and design strategies and policies 

to manage its spread. This study applies an improved mathematical model to analyse and 

predict the growth of the epidemic. An ML-based improved model has been applied to pre- 

dict the potential threat of COVID-19 in countries worldwide. We show that using iterative 

weighting for fitting Generalized Inverse Weibull distribution, a better fit can be obtained 

to develop a prediction framework. This has been deployed on a cloud computing platform 

for more accurate and real-time prediction of the growth behavior of the epidemic. A data 

driven approach with higher accuracy as here can be very useful for a proactive response 

from the government and citizens. Finally, we propose a set of research opportunities and 

setup grounds for further practical applications. 

© 2020 Elsevier B.V. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

The novel Coronavirus disease (COVID-19) was first reported on 31 December 2019 in the Wuhan, Hubei Province,

China. It started spreading rapidly across the world [1] . The cumulative incidence of the causitive virus (SARS-CoV-2) is

rapidly increasing and has affected 196 countries and territories with USA, Spain, Italy, U.K. and France being the most

affected [2] . World Health Organization (WHO) has declared the coronavirus outbreak a pandemic, while the virus contin-

ues to spread [3] . As on 4 May 2020, a total of 3,581,884 confirmed positive cases have been reported leading to 248,558

deaths [2] . The major difference between the pandemic caused by CoV-2 and related viruses, like Severe Acute Respiratory

Syndrome (SARS) and Middle East Respiratory Syndrome (MERS), is the ability of CoV-2 to spread rapidly through human

contact and leave nearly 20% infected subjects as symptom-less carriers [4] . Moreover, various studies reported that the

disease caused by CoV-2 is more dangerous for people with weak immune system. The elderly people and patients with life

threatening diseases like cancer, diabetes, neurological conditions, coronary heart disease and HIV/AIDS are more vulnerable
� Abbreviations: ML, Machine Learning; SARS-CoV-2, Severe Acute Respiratory Syndrome Coronavirus 2, COVID-19, Coronavirus disease 
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to severe effects of COVID-19 [5] . In the absence of any curative drug, the only solution is to slow down the spread by

exercising “social distancing” to block the chain of spread of the virus. This behavior of CoV-2 requires developing robust

mathematical basis for tracking its spread and automation of the tracking tools for on line dynamic decision making. 

There is a need for innovative solutions to develop, manage and analyse big data on the growing network of infected

subjects, patient details, their community movements, and integrate with clinical trials and, pharmaceutical, genomic and

public health data [6] . Multiple sources of data including, text messages, online communications, social media and web arti-

cles can be very helpful in analyzing the growth of infection with community behaviour. Wrapping this data with Machine

Learning (ML) and Artificial Intelligence (AI), researchers can forecast where and when, the disease is likely to spread, and

notify those regions to match the required arrangements. Travel history of infected subjects can be tracked automatically, to

study epidemiological correlations with the spread of the disease. Some community transmission based effects have been

studied in other works 1 . Infrastructure for the storage and analytics of such huge data for further processing needs to be

developed in an efficient and cost-effective manner. This needs to be organized through utilization of cloud computing and

AI solutions [7] . Alibaba developed cloud and AI solutions to help China, fight against coronavirus, predict the peak, size

and duration of the outbreak, which is claimed to have been implemented with 98% accuracy in real world tests in vari-

ous regions of China [8] . Different types of pneumonia can be resolved using ML-based CT Image Analytics Solution, which

can be helpful to monitor the patients with COVID-19 [9] . Details can be seen in [10] . The development of vaccine for

COVID-19 can also be accelerated by analysing the genome sequences and molecular docking, deploying various ML and AI

techniques [11] . 

1.1. Motivation and our contributions 

ML [12] can be utilized to handle large data and intelligently predict the spread of the disease. Cloud computing [13] can

be used to rapidly enhance the prediction process using high-speed computations [7] . Novel energy-efficient edge systems

can be used to procure data, in order to bring down power consumption. In this paper, we present a prediction model

deployed using FogBus framework [14] for accurate prediction of the number of COVID-19 cases, the rise and the fall of the

number of cases in near future and the date when various countries may expect the pandemic to end. We also provide a

detailed comparison with a baseline model and show how catastrophic the effects can be if poorly fitting models are used.

We present a prediction scheme based on the ML model, which can be used in remote cloud nodes for real-time prediction

allowing governments and citizens to respond proactively. Finally, we summarize this work and present various research

directions. 

1.2. Article structure 

The rest of the paper is organized as follows: Section 2 presents the prediction model and performance comparison.

Section 3 provides discussions on the results, biases, implementation and possible deviations in future. Section 4 provides

research opportunities and emerging trends. Finally, Section 5 , concludes the work and describes the future research oppor-

tunities. 

2. Prediction model and performance comparison 

Machine Learning (ML) and Data Science community are striving hard to improve the forecasts of epidemiological models

and analyze the information flowing over Twitter for the development of management strategies, and the assessment of

impact of policies to curb its spread. Various datasets in this regard have been openly released to the public. Yet, there is a

need to capture, develop and analyse more data as the COVID-19 grows worldwide [15,16] . 

The novel coronavirus is leaving a deep socio-economic impact globally. Due to the ease of virus transmission, primar-

ily through droplets of saliva or discharge from the nose when an infected person coughs or sneezes, countries which are

densely populated need to be on a higher alert [17] . To gain more insight on how COVID-19 is impacting the world pop-

ulation and to predict the number of COVID-19 cases and dates when the pandemic may be expected to end in various

countries, we propose a Machine Learning model that can be run continuously on Cloud Data Centers (CDCs) for accurate

spread prediction and proactive development of strategic response by the government and citizens. 

2.1. Dataset 

The dataset used in this case study is the Our World in Data by Hannah Ritchie 2 . The dataset is updated daily from the

World Health Organization (WHO) situation reports 3 . More details about the dataset are available at: https://ourworldindata.

org/coronavirus-source-data . 
1 CDC transmission of CoV-2 https://www.cdc.gov/mmwr/volumes/69/wr/mm6915e1.htm 

2 Our World In Data: COVID-19 Dataset; source: https://github.com/owid/covid- 19- data/tree/master/public/data/ 
3 Situation Reports-WHO; source: https://www.who.int/emergencies/diseases/novel- coronavirus- 2019/situation- reports 

https://ourworldindata.org/coronavirus-source-data
https://www.cdc.gov/mmwr/volumes/69/wr/mm6915e1.htm
https://github.com/owid/covid-19-data/tree/master/public/data/
https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports


S. Tuli, S. Tuli and R. Tuli et al. / Internet of Things 11 (2020) 100222 3 

Fig. 1. Proposed Cloud based AI framework for COVID-19 related analytics. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.2. Cloud framework 

The ML models are built to make a good advanced prediction of the number of new cases and the dates when the

pandemic might end. To provide fail-safe computation and quick data analysis, we propose a framework to deploy these

models on cloud datacenters, as shown in Fig. 1 . In a cloud based environment, the government hospitals and private

health-centers continuously send their positive patient count. Population density, average and median age, weather con-

ditions, health facilities etc. are also to be integrated for enhancing the accuracy of the predictions. For this case study, we

used three instances of single core Azure B1s virtual machines with 1-GiB RAM, SSD Storage and 64-bit Microsoft Windows

Server 2016 4 . We used the HealthFog [12] framework leveraging the FogBus [14] for deploying multiple analysis tasks in

an ensemble learning fashion to predict various metrics, like the number of anticipated facilities to manage patients and

the hospitals. We analyzed that the cost of tracking patients on a daily basis, amortized CPU consumption and Cloud exe-

cution is 37% and only 1.2 USD per day. As the dataset size increases, computationally more powerful resources would be

needed. 

2.3. Machine learning model 

Many recent works have suggested that the COVID-19 spread follows exponential distribution [18–20] . As per empirical

evaluations and previous datasets on SARS-CoV-2 virus pandemic, many sources have shown that data corresponding to

new cases with time has large number of outliers and may or may not follow a standard distribution like Gaussian or

Exponential [21–24] . In recent study by Data-Driven Innovation Laboratory, Singapore University of Technology and Design

(SUTD) 5 , the regression curves were drawn using the Susceptible-Infected-Recovered model [25] and Gaussian distribution

was deployed to estimate the number of cases with time. However, in the previously reported studies on the earlier version

of the virus, namely SARA-CoV-1, the data was reported to follow Generalized Inverse Weibull (GIW) Distribution [26] better

than Gaussian as shown in Fig. 2 (details of Robust Weibull fitting follow in the next section). Detailed comparison for SARS-
4 Azure Cloud VMs: https://azure.microsoft.com/en-au/pricing/calculator/ 
5 When Will COVID-19 End, DDI Lab, SUTD: https://ddi.sutd.edu.sg/when- will- covid- 19- end 

https://azure.microsoft.com/en-au/pricing/calculator/
https://ddi.sutd.edu.sg/when-will-covid-19-end
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Fig. 2. Fit curves for SARS-CoV-1 pandemic for Hong Kong (SAR), China. Data source: WHO epidemic curves ( https://www.who.int/csr/sars/epicurve/ 

epiindex/en/index4.html ). 

Fig. 3. Iterative weighting technique for robust curve fitting. 

 

 

 

 

 

 

 

 

 

 

 

CoV-2 has been described in the next section. This fits the following function to the data: 

f (x ) = k · γ · β · αβ · x −1 −β · exp 

(
− γ ( 

α

x 
) β

)
. (1) 

Here, f ( x ) denotes the number of cases with x , where x > 0 is the time in number of days from the first case, and

α, β, γ > 0 , ∈ R are parameters of the model. Now, we can find the appropriate values of the parameters α, β and γ to

minimize the error between the predicted cases ( y = f (x ) ) and the actual cases ( ̂  y ). This can be done using the popular

Machine Learning technique of Levenberg-Marquardt (LM) for curve fitting [27] . However, as various sources have suggested,

in initial stages of COVID-19 the data has many outliers and noise. This makes it hard to accurately predict the number

of cases. Thus, we propose an iterative weighting strategy and call our fitting technique ”Robust Fitting”. A diagrammatic

representation of the iterative weighting process is shown in Fig. 3 . 

The main idea is as follows. We maintain weights for all data points ( i ) in every iteration ( n , starting from 0) as w 

n 
i 
. First,

we fit a curve using the LM technique with weights of all data points as 1, thus w 

0 
i 

= 1 ∀ i . Second, we find the weight

corresponding to every point for the next iteration ( w 

n +1 
i 

) ) as: 

w 

n +1 
i 

= 

exp 

(
1 − d n 

i 
−tanh (d n 

i 
) 

max i d 
n 
i 
−tanh (d n 

i 
) 

)
∑ 

i exp 

(
1 − d n 

i 
−tanh (d n 

i 
) 

max i d 
n 
i 
−tanh (d n 

i 
) 

) . (2) 

Simply, in the above equation, we first take tanhshrink function defined as tanhshrink (x ) = x − tanh (x ) for the distances

of all points along y axis from the curve ( d i ). This is to have a higher value for points far from the curve and near 0 value

for closer points. This, is then standardized by dividing with max value over all points and subtracted from 1 to get a weight

https://www.who.int/csr/sars/epicurve/epiindex/en/index4.html
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Fig. 4. Comparison of predicted dates to reach 97% of the total expected cases by baseline Gaussian and proposed Robust Weibull models. The predicted 

end date of the pandemic in the baseline model are over-optimistic. 

 

 

 

 

 

 

 

 

 

 

 

 

 

corresponding to each point. This weight is then standardized using softmax function so that sum of all weights is 1. The

curve is fit again using LM method, now with the new weights w 

n +1 
i 

. The algorithm converges when the sum total deviation

of all weights becomes lower than a threshold value. 

2.4. Distribution model selection 

To find the best fitting distribution model for the data corresponding to COVID-19, we studied the data on daily new

confirmed COVID cases. Five sets of global data on daily new COVID-19 cases were used to fit parameters of different types

of distributions. Finally, we identified the best performing 5 distributions. The results are shown in Table 1 . We observe that

using the iteratively weighted approach, the Inverse Weibull function fits the best to the COVID-19 dataset, as compared to

the iterative versions of Gaussian, Beta (4-parameter), Fisher-Tippet (Extreme Value distribution), and Log Normal functions.

When applied to the same dataset, Iterative Weibull showed an average MAPE of 12% lower than non-iteratively weighted

Weibull. A step-by-step algorithm for iteratively weighted curve fitting using the GIW distribution (called ”Robust Weibull”)

is given in Algorithm 1 . 

Algorithm 1 Robust Curve Fitting using Iterative weighting. 

Require: 

x : Input sequence of days from first case 

y : Number of cases for each day in x 

ε : Threshold parameter 

procedure Robust Curve Fitting 

w 

0 ← Unit vector [1] × size (x ) 

for iteration n from 0, step 1 do 

f ← LM(input = x, target = y, weights = w 

n ) 

d i ← | f (x i ) − y i | ∀ i 

w 

n +1 
i 

← 

exp 

(
1 − d n 

i 
−tanh (d n 

i 
) 

max i d 
n 
i 

−tanh (d n 
i 
) 

)

∑ 

i exp 

(
1 − d n 

i 
−tanh (d n 

i 
) 

max i d 
n 
i 

−tanh (d n 
i 
) 

)

if 
∑ 

i | w 

n 
i 

− w 

n +1 
i 

| < ε then 

break 

end for 

end procedure 

2.5. Analysis and interpretation 

To compare the proposed ”Robust Weibull fitting” model, we use the baseline proposed by Jianxi Luo from SUTD 

3 . The

comparison metrics include Mean Squared Error (MSE), Mean Absolute Percentage Error (MAPE) and Coefficient of determi-

nation ( R 2 ). Table 2 shows the model predictions of the spread of the COVID-19 for every major country for which sufficient

data was available and model fits had R 2 > 0.5 using the proposed model. As shown in the table, the proposed model

performs significantly better than the baseline. 
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Table 1 

Preliminary Evaluation of different models. We observe that iterative fitting of Inverse Weibull performs significantly better than iterative fitting of other distributions like Gaussian, Beta (4-parameter), Fisher- 

Tippet (Extreme Value distribution), and Log Normal. The lowest value of MSE/MAPE and highest values of R 2 among all distributions are shown in bold. 

Country MSE R 2 MAPE 

Weibull Gaussian Beta 4 Fisher-Tippet Log Normal Weibull Gaussian Beta 4 Fisher-Tippet Log Normal Weibull Gaussian Beta 4 Fisher-Tippet Log Normal 

World 2.41E + 07 3.78E + 07 2.99E + 07 2.89E + 07 2.99E + 07 0.98 0.97 0.98 0.97 0.97 49.14 49.14 50.39 48.12 46.19 

India 6.97E + 03 7.09E + 03 6.89E + 03 6.89E + 03 7.00E + 03 0.97 0.97 0.98 0.97 0.97 18.33 18.33 18.49 21.69 20.69 

United States 8.37E + 06 1.11E + 07 8.63E + 05 9.47E + 06 9.78E + 06 0.95 0.93 0.94 0.93 0.94 24.33 24.33 40.23 71.64 111.63 

United Kingdom 2.00E + 05 2.22E + 05 2.12E + 05 2.02E + 05 2.07E + 05 0.95 0.95 0.95 0.95 0.95 21.46 21.46 20.43 21.52 17.42 

Italy 1.56E + 05 3.38E + 05 2.10E + 05 2.09E + 05 2.35E + 05 0.96 0.92 0.95 0.95 0.94 14.98 14.98 20.00 19.62 170.63 
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Table 2 

Predictions and error comparisons. Country wise predictions using Robust Weibull model and error comparison between Robust Weibull and baseline 

Gaussian Model. We predict the total number of cases that will be reached, and the last case date i.e. when the model predicts new cases < 1. We also 

predict the date when the total number will reach 97% of the total expected cases. Such data is critical to prepare the healthcare services in advance. The 

fit comparison metrics (with proposed model as W and baseline model as G ) show that Mean Square Error (MSE) and the Mean Absolute Percentage Error 

(MAPE) of the proposed model are lower than baseline for most cases. The coefficient of determination ( R 2 ) is higher for the proposed model for most 

of the countries. The least MSE/MAPE and highest R 2 values among the two models are shown in bold. Data upto 4 May, 2020 was used to create these 

results. 

Country 

Predictions of Robust Weibull Model Fit comparison metrics 

Total Cases Date of last case 97% cases date MSE (W) MSE (G) R 2 (W) R 2 (G) MAPE (W) MAPE (G) 

United States 1,937,724 11-Feb-22 14-Aug-20 9.32E + 06 1.33E + 07 0.95 0.92 26.58 1568.56 

Russia 529,687 27-Nov-21 26-Sep-20 5.50E + 04 5.92E + 04 0.99 0.98 24.53 75.91 

India 409,418 29-Oct-24 13-Aug-21 8.40E + 03 9.11E + 03 0.97 0.97 22.38 80.47 

United Kingdom 331,124 31-Jul-21 18-Aug-20 2.54E + 05 3.19E + 05 0.95 0.93 20.14 211.72 

Ukraine 254,087 10-Dec-41 18-Jan-31 3.31E + 04 3.37E + 04 0.53 0.52 1842.80 2079.70 

Italy 253,022 7-Mar-21 27-Jun-20 1.52E + 05 3.55E + 05 0.96 0.91 14.55 1577.95 

Spain 236,737 30-Sep-20 20-Apr-20 4.67E + 05 6.59E + 05 0.93 0.90 3682.04 2917.90 

Turkey 234,218 22-Jun-23 30-Dec-20 2.27E + 05 1.49E + 05 0.92 0.94 30.95 555.87 

Germany 181,369 17-Oct-20 2-May-20 3.39E + 05 4.50E + 05 0.91 0.88 1013.65 582.89 

France 147,795 11-Oct-20 29-May-20 3.93E + 05 4.14E + 05 0.84 0.83 32.36 134.36 

Qatar 143,779 1-Oct-22 18-Mar-21 3.71E + 03 3.46E + 03 0.93 0.93 99.14 90.02 

Canada 139,331 7-Dec-21 31-Oct-20 2.12E + 04 2.64E + 04 0.95 0.94 28.19 210.56 

Belarus 135,375 4-Jun-22 2-Feb-21 1.28E + 04 1.28E + 04 0.83 0.83 1040.39 1101.48 

Iran 126,048 12-Mar-21 15-Jul-20 2.11E + 05 1.88E + 05 0.78 0.80 1847.80 2313.85 

China 84,171 6-Jul-20 27-Mar-20 1.40E + 06 1.28E + 06 0.48 0.53 114.04 202.88 

Sweden 68,671 25-Apr-22 15-Feb-21 5.33E + 03 5.45E + 03 0.91 0.91 20.55 151.04 

Belgium 65,257 19-Nov-20 27-Jun-20 3.88E + 04 4.10E + 04 0.88 0.88 18.76 134.34 

Bangladesh 53,127 19-Apr-22 22-Feb-21 1.38E + 03 1.60E + 03 0.96 0.96 30.89 118.80 

Netherlands 53,057 28-Nov-20 2-Jul-20 1.07E + 04 1.10E + 04 0.94 0.94 16.45 140.98 

United Arab Emirates 46,395 18-Jul-21 5-Nov-20 3.30E + 03 3.49E + 03 0.91 0.90 840.72 947.02 

Portugal 37,302 7-Jun-21 12-Sep-20 2.62E + 04 3.20E + 04 0.75 0.70 41.46 222.40 

Indonesia 35,581 19-Sep-21 20-Dec-20 1.24E + 03 1.22E + 03 0.93 0.93 51.96 124.06 

Poland 35,113 22-Nov-22 1-Aug-21 3.08E + 03 3.42E + 03 0.87 0.86 29.90 110.45 

Switzerland 31,407 26-Jul-20 13-May-20 1.14E + 04 1.39E + 04 0.92 0.90 383.82 476.28 

Bahrain 30,258 21-Mar-23 12-Jan-22 1.05E + 03 1.04E + 03 0.57 0.57 98.32 102.20 

Ireland 27,694 6-Sep-20 12-Jun-20 1.17E + 04 9.49E + 03 0.84 0.87 25.91 21.83 

Singapore 24,088 19-Jul-20 28-May-20 1.68E + 04 1.69E + 04 0.82 0.82 912.31 1018.38 

Dominican Republic 22,193 19-Jun-21 29-Apr-20 1.79E + 03 1.85E + 03 0.81 0.81 304.96 420.08 

Romania 22,102 24-Dec-20 10-Aug-20 1.98E + 03 2.29E + 03 0.91 0.90 16.83 87.83 

Algeria 19,188 6-Feb-22 16-May-21 3.59E + 02 3.96E + 02 0.86 0.85 61.43 147.61 

Israel 18,167 3-Aug-20 26-May-20 8.81E + 03 1.03E + 04 0.80 0.77 37.91 137.87 

Japan 17,614 27-Jul-20 29-May-20 1.12E + 04 1.08E + 04 0.74 0.75 162.70 202.00 

Morocco 16,972 24-May-22 2-Aug-21 1.60E + 03 1.40E + 03 0.69 0.73 188.07 171.78 

Serbia 16,426 24-Jan-21 27-Aug-20 2.49E + 03 2.36E + 03 0.87 0.87 210.28 229.10 

Austria 15,781 9-Jun-20 30-Apr-20 4.07E + 03 5.33E + 03 0.92 0.89 23.08 34.08 

Philippines 14,371 24-Nov-20 2-Apr-20 5.08E + 03 5.49E + 03 0.65 0.62 543.57 698.02 

Denmark 13,282 26-Oct-20 17-Jul-20 1.94E + 03 1.81E + 03 0.81 0.82 18.95 104.47 

Moldova 12,818 6-Feb-22 12-Jun-21 8.78E + 02 9.57E + 02 0.75 0.73 36.51 68.69 

Hungary 11,077 19-Jul-22 22-Nov-21 5.85E + 02 5.66E + 02 0.64 0.65 49.55 71.00 

South Korea 10,780 4-May-20 2-Apr-20 3.35E + 03 3.88E + 03 0.87 0.85 55.81 68.84 

Finland 9158 21-Dec-20 5-Sep-20 9.09E + 02 9.11E + 02 0.74 0.74 125.43 188.74 

Norway 8534 23-Jul-20 19-Apr-20 1.73E + 03 1.79E + 03 0.80 0.79 187.65 211.88 

Czech Republic 8528 14-Jul-20 22-May-20 1.34E + 03 1.56E + 03 0.85 0.83 20.11 59.31 

Malaysia 7080 6-Aug-20 7-Jun-20 4.88E + 02 5.73E + 02 0.89 0.87 30.30 112.20 

Australia 6797 17-May-20 21-Apr-20 2.54E + 03 2.78E + 03 0.81 0.79 31.85 36.77 

Oman 4871 4-Sep-20 23-Apr-20 6.01E + 02 5.98E + 02 0.66 0.66 229.07 232.19 

Iraq 4113 20-Nov-20 20-Apr-20 4.99E + 02 5.21E + 02 0.47 0.45 299.89 354.05 

Luxembourg 3887 29-May-20 2-May-20 5.15E + 02 6.64E + 02 0.83 0.79 49.42 127.81 

Thailand 3044 30-May-20 2-Apr-20 8.51E + 02 9.01E + 02 0.63 0.61 381.04 399.02 

Greece 2944 7-Jul-20 28-Apr-20 3.69E + 02 3.67E + 02 0.66 0.66 137.87 127.28 

Croatia 2275 15-Jun-20 18-May-20 8.44E + 01 1.04E + 02 0.88 0.85 20.64 45.14 

World 6,734,075 29-Jan-24 11-Oct-20 2.91E + 07 4.92E + 07 0.98 0.96 47.53 63.36 
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Fig. 5. Number of new cases and deaths for all countries. 

Fig. 6. Predicted Mortality Rate % for a few countries. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As shown in Fig. 4 , the predictions of the baseline Gaussian model deployed by SUTD are overoptimistic. Following

such models could lead to premature uplifting of the lockdown, causing adverse effect on management of the epidemic.

Having better fit models, as proposed here, could help plan a better strategy, based on more accurate predictions and future

scenarios. 

Fig. 7 shows the total predicted number of cases for all countries across the globe. Here we have neglected those coun-

tries where the data is insufficient for making predictions, or the number of days for data is less than 30. As shown in

Fig. 4 explained in model section, the fit curve can be used to predict the number of cases that will have to be dealt by the

country, assuming the same trend continues. The figure illustrates that the maximum number of total cases will be in the

North America region. The number of cases will also be high in the European continent, Russia and eastern Asia, including

China, the original epicenter of the disease. 

The model was also applied to the data corresponding to the number of deaths with time. Fig. 5 shows curves corre-

sponding to both new cases and deaths across the world. Using the predicted total deaths, the expected mortality rate can

be calculated as 100 × Predicted total deaths 
Predicted total cases 

. The predicted mortality rates of the world and few countries are shown in Fig. 6 . 

3. Discussions 

This section discuss about the biases in data, integration details with tracking systems and trend possibilities in the

future. 

3.1. Biases in data 

The outbreak of SARS-CoV-2 and its corresponding diseases COVID-19 has received diverse responses from different

countries. Countries like India, China and Australia have imposed partial to full nation-wide lock-downs leading to mixed

repercussions [28–31] . Other countries like Sweden have imposed little to no restrictions. Such factors definitely affect the

distribution of cases and hence the curve parameters. 

Moreover, there is bias in data due to diverse travel histories and contact demographic histories of people from

Wuhan [32] . Reports from health systems in Wuhan are overwhelmed and the only possible way of quantifying spread
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Fig. 7. Global heat-map for total predicted cases for different countries as on May 4, 2020 (countries with insufficient data for prediction are shown in 

white). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

of coronavirus is through cumulative cases in each country [33] . The proposed GIW model is applied separately to each

country to fit the model parameters to the distribution of new cases with time. The parameters themselves incorporate

the biases from travel histories of citizens and migrants, lock-downs and social distancing measures taken specifically

by each country. Having a holistic models that can take these indicators as quantified inputs to generate curve without

having any training data would require development and collection of large datasets. Such models can be explored in

future. 

3.2. Leveraging tracking systems for near-real time predictions 

With efficient and up-to-date tracking mechanisms, the spread of the disease can be traced. Once authorities have in-

formation on the spread of the virus, relevant decisions can be made including locking down target areas and increasing

testing measures in adjacent areas. Only with systematic and planned testing can we mitigate the negative effects of the

spread of this disease [34] . Government institutions can utilize cloud services to deploy such frameworks, feeding data from

such tracking sensors and predict in near-real time the number of cases in the near future [35] . Further, if we frequently up-

date the dataset and utilize other demographic indicators like population density, temperatures and age distribution in the

proposed model, we can make more reliable and accurate predictions for the last expected case. This enables the authorities

to lift the lock-down in a phased manner, thus keeping a check on the post-lockdown rise in cases. 

3.3. Beyond the lock-downs 

Currently, travel and group activities have been restricted world-over. As lock-downs are lifted, the number of new cases

and deaths might change significantly from the proposed predicted trends. Other factors like virus mutations [36] would

also affect the distribution in future. Hence, continuous work is required to ensure accurate predictions are made and correct

measures can be taken. 

4. Country-wise predictions 

All data uptil 4 May 2020 has been used to generate the prediction results shown in Fig. 8 below:



10 S. Tuli, S. Tuli and R. Tuli et al. / Internet of Things 11 (2020) 100222 

Fig. 8. New cases for different countries (continued). 



S. Tuli, S. Tuli and R. Tuli et al. / Internet of Things 11 (2020) 100222 11 

Fig. 8. Continued 
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Fig. 8. Continued 
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Fig. 8. Continued 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5. Research opportunities and emerging trends 

The COVID-19 pandemic has opened several new directions of research for the current and future pandemics. The promi-

nent research opportunities are described as follows. 

1. Incorporating other indicators: Important parameters like population density, distribution of age, individual and com-

munity movements, level of healthcare facilities available, strain type and virulence of the virus etc., need to be included

in the regression model to further enhance the prediction accuracy. 

2. Integrating with other time series models: Models like ARIMA [37] can be integrated with Weibull function for further

time series analysis and predictions. 

3. Predicting protein structure of CoV-2: AI can be utilized to predict the structure and function of various proteins as-

sociated with CoV-2 and their interaction with the host human proteins and cellular environment. The contribution of

various socio-economic variables that determine the vulnerability, spread and progression of the epidemic can be pre-

dicted by developing suitable algorithms. This can help efficiently decide resource allocation in large countries with

limited healthcare resources. 

4. Analyzing social media data using AI: We can also explore and analyze social media data for real time collection of

epidemiological data related to COVID-19 [15] . 

5. Contact-less treatment and drug delivery using Robotics: AI based Robots can be used to perform contact-less deliv-

ery and treat patients remotely to reduce involvement of medical staff with infected people. Further, there have been

considerable improvements in air quality across the globe due to COVID-19 enforced lock-downs. 

6. Climate Change: There have been considerable improvements in air quality across the globe due to COVID19 enforced

lock-downs. However, there is a prevailing conjecture of the revenge pollution following these lock-downs [38] . More

extensive studies considering age distributions and demographics with other characteristics van be studied as part of

future work. 

7. Risk assessment: The risk of severe disease related with COVID-19 for people with different age can be predicted using

AI. Using such algorithms, proactive measures can be taken to prevent virus being spread to sensitive groups of the

society. 

8. Real time sensors and visual imaging: AI based proactive measures can be taken to prevent the spread of the virus

to sensitive groups in the society. Real time sensors can be used, for example in traffic camera or surveillance, which

track COVID-19 symptoms based on visual imaging and tracking apps, and inform respective hospitals and administra-

tive authorities for punitive action [39] . Tracking needs to cover all stages from ports of entries to public places and

hospitals [40] . 

The research directions and challenges are summarized in Fig. 9 . 
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Fig. 9. Future Research Directions and Open Challenges. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6. Summary and conclusions 

In this study, we have discussed how improved mathematical modelling, Machine Learning and cloud computing can

help to predict the growth of the epidemic proactively. Further, a case study has been presented which shows the severity

of the spread of CoV-2 in countries worldwide. Using the proposed Robust Weibull model based on iterative weighting, we

show that our model is able to make statistically better predictions than the baseline. The baseline Gaussian model shows

an over-optimistic picture of the COVID-19 scenario. A poorly fitting model could lead to a non optimal decision making,

leading to worsening of public health situation. 

Software Availability 

Our prediction model is available online at https://github.com/shreshthtuli/covid- 19- prediction . The dataset used for this

work is the Our World Dataset , available at https://github.com/owid/covid- 19- data/tree/master/public/data/ . Few interactive

graphs can be seen at https://collaboration.coraltele.com/covid/ . 
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